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Abstract. We use the self-consistent harmonic approximation (SCHA) to study the two-dimensional classi-
cal Heisenberg anisotropic (easy-plane) ferromagnetic model including nearest- and next-nearest neighbor
exchange interactions. For temperatures much lower than the Kosterlitz-Thouless phase transition temper-
ature TKT, spin waves must be the most relevant excitations in the system and the SCHA must account
for its behavior. However, for temperatures near TKT, we should expect vortex pairs to be quite important.
The effect of these vortex excitations on the phase transition temperature is included in our theory as a
renormalization of the exchange interactions. Then, combining the SCHA theory to the renormalization
effect due to vortex pairs, we calculate the dependence of TKT as a function of the easy-plane anisotropies
and exchange interactions.

PACS. 75.10.Hk Classical spin models – 75.40.Cx Static properties (order parameter, static susceptibility,
heat capacities, critical exponents, etc.)

1 Introduction

Magnetic systems with reduced dimensionality have pro-
vided a basis for a great number of insights into the
several roles thermal fluctuations play in driving phase
transitions [1]. The XY model represents a particularly
important example of such a system, impacting problems
in disciplines ranging from particle field theory to mate-
rials science. For instance, recently, Stephens and Hu [2]
have shown that the black hole phase transition is qualita-
tively similar to the Kosterlitz-Thouless (KT) transition
in condensed matter. Condensed matter systems of atoms
and molecules are usually easier to understand than their
high energy counterparts such as strings or geons. Then,
we can exploit the analogies between different systems to
shine some light into the behavior of systems which are
otherwise experimentally and theoretically intractable.

The KT theory has been applied to many physical
systems, including magnetic compounds, superconduct-
ing and superfluid films, and, also, to two-dimensional
(2D) arrays of coupled Josephson junctions [3]. Some of
the notable properties of the XY model are the absence
of long-range order, the presence of topological defects
known as vortices, and the KT transition. The low tem-
perature phase has only bound vortex-antivortex pairs and
the phase transition is associated to the unbinding of these
pairs [4]. Gupta and Baillie [3] have presented a qualita-
tive confirmation of the role played by vortex-antivortex
pairs in the KT scenario.
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However, most of the theoretical work done on low di-
mensional magnetic systems has considered only nearest-
neighbor (nn) interactions. The understanding thus
obtained can change considerably when one considers in-
teractions with longer range. For example, spin systems
with long-range potentials decaying as r−p have attracted
theoretical attention during the last two decades due to
the fact that those systems are related to the mesoscopic
tunnel junctions problem [5]. It is now known that long-
range attractive interactions can induce critical behavior
in low dimensional systems – even in one-dimension (1D),
where there is no phase transition if only nearest interac-
tions are considered. Thus, for models describing systems
with d dimensions and 2 spin components – as the planar
rotator model – it has been theoretically proven [6] that
for d < p < 2d, where d is the dimension of the system, an
ordering phase transition exists at a finite temperature.

Our interest here is to study the anisotropic Heisenberg
model in the square lattice with easy-plane anisotropy in-
cluding the next-nearest neighbor (nnn) exchange inter-
action to our model (described in (7)). It has been ar-
gued [7] that real compounds approximating 2D behavior
with planar anisotropy – of which Rb2CrCl4 is probably
the best example – may be considered to be equivalent to
ideal 2D XY systems [8]. In fact, a considerable amount
of theoretical and numerical work has been directed to
anisotropic Heisenberg systems and it is now very well
accepted [9] that a Kosterlitz-Thouless-like transition is
also observed in 2D systems with planar anisotropy. How-
ever, those investigations are usually restricted to mod-
els including only nearest exchange interactions. Real
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materials can require a model including interactions of
longer range. For example, the investigation on the com-
pound BaNi2(PO4)2 has also revealed a 2D XY behavior
but its magnetic properties deduced from magnetization,
susceptibility, specific heat and neutron scattering exper-
iments [10] are well understood by considering the follow-
ing model Hamiltonian

H = −
∑
i,j

JijSi · Sj +D
∑
i

(Szi )2 (1)

with D = 7.3 K, Jij = J1 = −2.2 K for interactions be-
tween nearest neighbors, and J2 = 0.3 K and J3 = −8.8 K
for second- and third-neighbors, respectively. Thus, it is
important to extend the theoretical investigations to mod-
els including longer range interactions. Another motiva-
tion to study these models can be found in a recent work
done by Kim and Carbotte [11] showing that the effective
Hamiltonian for the phase fluctuations in an s-wave super-
conductors is an XY Hamiltonian including interactions
up to third neighbors.

Here, we will investigate the effect due to the next-
nearest neighbor interaction on the phase transition
temperature and, also, on other properties like the
spin-stiffness using an approximate method known as
self-consistent harmonic approximation (SCHA). The ef-
fect of bound vortex pairs near the transiton temperature
will also be discussed.

The SCHA is a simple approximate method that gives
reasonable agreement with more sophisticated theories
and, also, with Monte Carlo data [12]. For this reason,
it has been widely used in the literature despite the fact
that it does not always provide the correct order of the
transition; in fact, the SCHA always predicts a first-order
transition. This feature is due to the fact that, in the pro-
cedure, correlation functions containing more than two
operators are factorized into products of pair correlation
functions that are determined self-consistently. Any such
factorization process breaks down sufficiently close to the
transition point where the correlations are large and, when
using such approximations, we must be careful and check
for consistency.

The method has been extensively discussed in the lit-
erature (see, for example, Ref. [13]) and it consists, ba-
sically, in replacing the Hamiltonian of the system by an
effective harmonic Hamiltonian with temperature depen-
dent renormalized parameters. For example, for the planar
rotator model

HPR = −JS
2

2

∑
r,a

cos(φr+a − φr), (2)

where φr is the angle associated with each lattice site
r and a denotes the nearest neighbors to each site, the
Hamiltonian can be written in its continuum form as

Hc
PR =

JS2

2

∫
d2r(∇φ)2 (3)

where a constant term was absorbed into the definition
of ground state energy. However, in writing (3), all an-
harmonic terms present in (2) were neglected. One way

to take into account these terms is to renormalize the ex-
change interaction constant J using instead ρsJ , where
ρs is the spin stiffness [14] which, for the planar rotator
model is given by

ρs = 〈cos(φr − φr+a)〉 · (4)

The stiffness calculated using (4) in the SCHA formalism,
jumps discontinuously to zero at a critical temperature Tc

given by

T SCHA
c = zJS2/e (5)

where z is the number of nearest neighbors in the lat-
tice and e is the base of natural logarithms. The mean
field approximation (MFA) applied to the planar rotator
yields a second-order transition with a higher transition
temperature

TMF
c = zJS2/2 ≈ 1.36T SCHA

c . (6)

It is very well known that the MFA usually overestimates
the transition temperature because thermal fluctuations
due to long-wavelength spin waves are neglected. Obvi-
ously, being the SCHA an approximate method, we can
expect that its estimates for the transition temperature
of a specific model will also be above the exact value.
Notice, however, that for the planar rotator model the
value obtained via SCHA is lower than the one obtained
via MFA. Nevertleless, for the 2D planar rotator in a
square lattice (z = 4), both MFA and SCHA estimates
for Tc are well above the Monte Carlo [15] prediction
Tc = 0.898JS2 and, also, the renormalization group calcu-
lation [16] Tc = 0.917JS2. Here we have to remember that
vortices play an important role in the transition occurring
in the 2D planar rotator model and such excitations are
not included in the MFA or in the standard SCHA formal-
ism. As it will be discussed later in this paper, the effect
of vortices can be added to the SCHA treatment and the
obtained transition temperature for the 2D square lattice
planar rotator model [17] is Tc = 0.96JS2 which compares
well to the Monte Carlo and renormalization values.

The SCHA has been very successful in describing sev-
eral systems (see, for example, Refs. [18,19]), and, spe-
cially, many magnetic systems [20–23]. When applied to
study the thermodynamics of the quantum 2D XY model,
the method showed that quantum fluctuations work in
the sense of reducing the KT transition temperature from
the classical TKT value. The SCHA estimate for the spin
S = 1/2 case gave TKT/JS

2 = 0.30 which compares well
to the Monte Carlo prediction TKT/JS

2 = 0.35 for the
same model [24]. The method has also been applied to
the planar rotator in two-dimensions with long-range in-
teractions decaying as r−p [23] and a good agreement to
Monte Carlo results reported in the literature was found,
as will be discussed later in this work.

In Section 2 we discuss the SCHA theory and the cal-
culation of the spin stiffness. The screening effect due to
vortex pairs and the critical temperature as a function
of the model parameters are discussed in Section 3. Our
conclusion is presented in Section 4.
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2 The SCHA approximation

Our model is described by the following Hamiltonian

H = −J
2

∑
r

[∑
a

(
SxrS

x
r+a + SyrS

y
r+a + λ1S

z
rS

z
r+a

)
+
∑
b

α
(
Sxr S

x
r+b + SyrS

y
r+b + λ2S

z
rS

z
r+b

) ]
(7)

where the sum in r runs over all sites of a square lattice, a
denotes the nearest-neighbors to each site r and b denotes
the next-nearest neighbors. The easy-plane anisotropies
are described by the λ1 and λ2 parameters and Jα is the
nnn exchange interaction.

There is an extensive literature describing the SCHA
procedure [20], and, for this reason, we will only sketch the
main steps leading to the expressions for the spin stiffness
and other quantities. We start by writing the spin compo-
nents in (7) in terms of the representation

Sxr = S

√
1−

(
Szr
S

)2

cosφr,

Syr = S

√
1−

(
Szr
S

)2

sinφr, (8)

obtaining

H = −J
2

∑
r

{∑
a

[
S2

√
1−

(
Szr
S

)2
√

1−
(
Szr+a

S

)2

× cos(φr − φr+a) + λ1S
z
rS

z
r+a

]

+α
∑
b

[
S2

√
1−

(
Szr
S

)2
√

1−
(
Szr+b

S

)2

× cos(φr − φr+b) + λ2S
z
rS

z
r+b

]}
· (9)

Then, following the procedure explained in [21], we ex-
pand the above expression for the Hamiltonian in terms
of (Szr )2 and (φr − φr′)2, and, after using the normal or-
dering procedure and collecting the quadratic terms, we
obtain

H0 = 2J
∑
q

{
S2
[
ρa(1− γaq) + αρb(1− γbq)

]
φqφ−q

+
[
(1− λ1γ

a
q) + α(1− λ2γ

b
q)
]
SzqS

z
−q

}
(10)

for the Fourier transform of the effective harmonic expres-
sion of the Hamiltonian. Notice that the renormalization
by the stiffness affects only the terms on φ. In (10), the
functions γaq and γbq, and the spin stiffness ρa and ρb are

defined as follows

γaq =
1
2

(
cos qx + cos qy

)
; (11)

γbq =
1
2
[

cos(qx + qy) + cos(qx − qy)
]
; (12)

ρa =

[
1− 〈

(
Szr
S

)2

〉
]

e−
1
2 〈(φr+a−φr)2〉; (13)

ρb =

[
1− 〈

(
Szr
S

)2

〉
]

e−
1
2 〈(φr+b−φr)2〉. (14)

In the calculation of ρa and ρb, we approximate 〈· · · 〉 by
〈· · · 〉0, that is, we use the harmonic HamiltonianH0 to cal-
culate the averages. This approximation results in treating
φr and Szr as uncoupled variables.

In order to obtain the total spin stiffness ρ and its
relation to ρa and ρb, we write (9) in its continuum version

Hc =
J̃

2

∫
d2r

{
S2(ρa + 2αρb)

1 + 2α
(∇φ)2 + (∇Sz)2

+
[(1− λ1) + 2α(1− λ2)]

1 + 2α
Sz∇2Sz

}
, (15)

where J̃ = J(1 + 2α). Then, we conclude that the total
spin stiffness is given by the factor multiplying the term
depending on φ, that is

ρ =
ρa + 2αρb

1 + 2α
· (16)

The averages appearing in (13) and (14) can be calcu-
lated if we introduce a Bogoliubov transformation

φq =
1√
2

{
(1− λ1γ

a
q) + α(1− λ2γ

b
q)

S2[ρa(1− γaq) + αρb(1− γbq)]

}1/4 [
a†q + a−q

]
Szq = i

1√
2

{
S2[ρa(1−γaq)+αρb(1−γbq)]

(1−λ1γaq)+α(1−λ2γbq)

}1/4 [
a†q−a−q

]
,

(17)

where a† and a are the creation and annihilation opera-
tors. This procedure is standard in spin wave theories and
leads us to the renormalized spin wave dispersion relation

ωq = 4JS
{[
ρa(1− γaq) + αρb(1− γbq)

]
×(1− λ1γ

a
q) + α(1− λ2γ

b
q)
}1/2

, (18)

as well as to the expressions for the averages appearing
in (13) and (14) giving

ρa =
[
1− T

4JS2
I(λ1, λ2)

]
× exp

{
− 1

(2π)2

T

4JS2

∫
d2q

(1− γaq)
ρa(1− γaq) + αρb(1− γbq)

}
,

(19)
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Fig. 1. Temperature dependence of the spin stiffness for α = 0.4 and λ1 = λ2 = 0.1. The continuous line corresponds to ρ. The
dashed and dotted lines correspond, respectively, to ρa and ρb as explained in the text.

ρb =
[
1− T

4JS2
I(λ1, λ2)

]
× exp

{
− 1

(2π)2

T

4JS2

∫
d2q

(1− γbq)
ρa(1− γaq) + αρb(1− γbq)

}
(20)

where

I(λ1, λ2) =
1

(2π)2

∫
d2q

1
(1− λ1γaq) + α(1− λ2γbq)

·

(21)

Equations (19–21) can then be solved self-consistently and
allow us to determine the stiffness ρ, given by (16), for each
temperature.

3 The renormalization by vortex pairs
and the phase transition

In Figure 1, we show the dependence of ρa, ρb and the
total spin stiffness ρ on the temperature T/J for α = 0.40
and λ1 = λ2 = 0.10. After some temperature Tmax, the
expressions for ρa andρb, equations (19, 20), do not have
any solution except the trivial one (ρa = ρb = 0). The
abrupt disappearance of the stiffness ρ can be thought as
signaling the break down of spin-wave like excitations and,
thus, the disappearance of phase ordering. Using a long
wavelength approximation for the integral in the argument
of the exponential in equations (19, 20), we obtain, in the
classical limit

ρ =
[1−ΘI(λ1, λ2)]

1 + 2α
e−

Θ
ρa+2αρb

(
1 + 2αe−

Θ
ρa+2αρb

)
, (22)

where Θ = T/(4JS2). From this equation, we can deter-
mine that Tmax is given by

Tmax

JS2
=

4
ex

x(1+2αe−x) + I(λ1, λ2)
, (23)

with x being determined by solving the equation (1−x)+
2αe−x(1−2x) = 0 for each α. Accepting Tmax as a first es-
timate of the transition temperature (Tmax → Tc), we can
easily conclude that for α = 0, that is, the nearest neigh-
bor model, we have x = 1 and the transition temperature
is given by

Tc(λ) =
4JS2

e+ I(λ1)
, (24)

which is the same equation obtained in [21] (for α = 0,
I(λ1, λ2) → I(λ1)). We remind that, for the planar rota-
tor model, I(λ1, λ2) = 0 and, from equations (23, 24), we
can also conclude [21] that, due to the out-of-plane fluctu-
ations, the transition temperature for the planar rotator
model is higher that the one for the XY model; particu-
larly, Tc = 1.47JS2 for the nn (α = 0) planar rotator while
Tc = 1.08JS2 for the classical XY model (α = λ1 = 0).
For α 6= 0 and λ1 = λ2 = 0, we have I(λ1, λ2) = 1 and,
from (23) we obtain Tc as a function of α. This result is
shown by the continuous line in Figure 2 where we see
that the transition temperature increases almost linearly
with α.

The dependence of Tc on the anisotropy parameters is
contained in the function I(λ1, λ2). For λ1 = λ2 = λ→ 1,
we have

I(λ, λ) = const.+
1

πλ(1 + 2α)
ln(1− λ)−1 (25)

meaning that as λ → 1, the transition temperature goes
to zero as 1/ ln[(1 − λ)−1]. The same behavior was ob-
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Fig. 2. Values obtained for Tc (SCHA theory — dashed line)
and TKT (SCHA + vortices — continuos line) as functions of
the α parameter for λ1 = λ2 = 0.

tained by Nelson and Pelcovits [25] using the renormal-
ization group technique. Their result does not depend on
explicitly including nnn interactions or not and could be
expected to hold for the model we are considering here.
However, it is interesting that the simple SCHA is able to
achieve to results obtained using a much more sophisti-
cated theory.

The SCHA described in the previous section provides
a way to include anharmonic corrections in the quadratic
Hamiltonian (10) but, due to its nature, it is completely
unable to incorporate the effect of bound vortex pairs —
the essential ingredient in a KT-like transition. It is well
known [26] that vortices only appear in a small range of
temperatures in the vicinity of TKT. Thus, for tempera-
tures T < J̃ , few vortex pairs exist and spin waves must be
the main feature in the system; meaning that ρmust incor-
porate the relevant corrections to the dispersion relation.
However, as T → Tc, the number of vortex pairs increases
exponentially and their effect on the dynamics becomes
more important. The spin-wave and vortex contribution
are apparently uncoupled and Kosterlitz and Thouless [27]
have found that the vortices effects is to renormalize the
spin-wave part. Later, Côtè and Griffin [28] developed a
theory analogous to the one used in classical electrody-
namics of continuous media and suggested that the vortex
pairs effect can be thought as a dielectric function ε. Then,
the effect of the bound pairs can be taken into account
by a second renormalization of the exchange constant as
schematically represented below

J̃ −(SCHA) −→ J̃ρ −vortices −→
J̃ρ

ε
= JT . (26)

There is no explicit calculation of the dielectric function
but it has been shown [16,29] that ε−1 exhibits a universal

0.0 1.0 2.0 3.0 4.0
α

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
K

T
/J

(1
+

2α
)S

2

λ1=λ2=0.10

Fig. 3. TKT as a function of α for λ1 = λ2 = 0.1

jump at T = TKT, in the long wavelength limit, given by

lim
T→T−KT

JT (T )
T

=
2
π
· (27)

One way to incorporate the vortex contribution is to
obtain the Kosterlitz-Thouless like temperature by the
crossing between the ρ(T ) curve and the line γ = JT =
2T/[π(1 + 2α)].

The dotted line in Figure 2 shows TKT as a func-
tion of α for λ1 = λ2 = 0: we see that the inclusion
of vortex pairs effects leads to a lower estimate for the
transition temperature. For the nn planar rotator, the in-
clusion of the renormalization due to vortices [17] leads
to TKT = 0.96JS2 which approaches better to the esti-
mates TKT = 0.898JS2 obtained via Monte Carlo [15]
and TKT = 0.917JS2 obtained by renormalization group
techniques [16]. Similarly, for the nn XY model, we ob-
tain TKT = 0.83JS2, in better agreement with the value
TKT = 0.725JS2 obtained via Monte Carlo simulation [30]
than the value obtained without including the vortex con-
tribution. Figure 2 shows that the curves for Tc and TKT

as functions of α are almost parallel but the difference be-
tween Tc and TKT decreases slightly as α → 1. Figure 3
also shows TKT × α but for λ = 0.1: there is no meaning-
ful difference between the data shown in that figure for
TKT and the corresponding ones for λ1 = λ2 = 0 (Fig. 2).
In Figure 4, we took α = 0.1 and varied the anisotropy
parameter: we observe, as discussed above, that the tran-
sition temperature varies very slowly with λ, except at the
close vicinity of the isotropic limit λ→ 1. Analysing Fig-
ure 4 we understand why Figures 2 and 3 are so similar:
the behavior of TKT for α = 0 and for α = 0.1 cannot be
expected to differ appreciably.

The increasing of the transition temperature as α, the
strength of the nnn interaction, increases could be ex-
pected since, in the case being considered, the effect of
the nnn interaction is basically to enhance the effective
coupling constant. It is interesting to note that the results



152 The European Physical Journal B

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

T
K

T
/J

(1
+

2α
)S

2

α=0.1

Fig. 4. TKT as function of λ1 = λ2 = λ for α = 0.1.

displayed in Figures 2, 3 and 4 suggest that the inclusion
of the nnn interaction results in a kind of scaling of the
transition temperature with (1 + 2α) this result is simi-
lar to the one found in [11]. Obviously, the nature of the
approximations inherent to the SCHA do not allow us to
extract decisive conclusions about the existence of such
scaling; further checking by other methods as , for exam-
ple, Monte Carlo simulations, would be required.

4 Conclusion

In this paper, we used the SCHA to treat the anisotropic
model with nn and nnn exchange interactions. We have
already applied the SCHA to several systems with easy-
plane anisotropy [20–23], and the comparison between
SCHA results and results obtained by more precise tech-
niques is very encouraging — despite the fact that the
SCHA estimates for transition temperatures are almost al-
ways above the ones obtained by Monte Carlo or renormal-
ization group approaches. In [20], we studied the 2D XY
quantum and classical models combining the SCHA with
the renormalization due to vortices as has also been done
in this work (Sect. 3): the results describe the effect of
quantum fluctuations in lowering Tc and compare quite
well to existing Monte Carlo results. The effect of inter-
planar interaction in XY models was also studied [22] by
the SCHA and the overall behavior obtained for the de-
pendence of Tc as a function of the interplanar coupling
resembles the one obtained by Monte Carlo simulations.
Long-range interactions in the 2D planar rotator model
where also studied in [23] with the SCHA. The model
Hamiltonian used in [23] is given by

H = −
∑

Jr,r′ (SxrS
x
r′ + SyrS

y
r′) (28)

where Jr,r′ = J |r − r′|−p, and, obviously, is quite differ-
ent from the Hamiltonian considered in this work. Con-
cerning (28), theoretical results [6] have proven that there

exists an ordering transition at a finite temperature for
2 < p < 4, whereas for p ≥ 4 the existing theorems [31]
do not rule out the possibility of having a KT-like tran-
sition. In [23], we considered p = 3, 4 and 5 obtaining a
quite good comparison to Romano’s data [32] — who also
found some evidence of KT-like transition for p = 4.

The present work gives continuity to our investiga-
tion of 2D easy plane models. Unfortunately, we could
not check the results obtained with the approximations
made here by comparing them to other results. However,
the fact that the results behave like it could be expected
for the model under investigation, added to the experience
that has been accumulated in dealing with SCHA leads us
to suggest that there is a KT-like transition whose tem-
perature scales with (1 + 2α).

It is important to remark that the SCHA is a very
simple method that, as shown in this work, can be eas-
ily extended to different models – as may be required
to treat real magnetic materials where anisotropies, long
range interactions, etc., may be important to correctly
describe their behavior. For example, a proper analysis of
the BaNi2(PO4)2 compound should require the inclusion
of interactions up to third neighbors — at least — since
the ratio α

′
= J3/J1 = 4 is much higher than α = 0.14.

Although it is not a difficult task to improve the model
used in this work adding this interaction, we can expect
that the major effect will be an increasing of the effec-
tive constant describing the exchange interaction. Follow-
ing the steps discussed here, we can guess that the SCHA
will give J1(1 + 2α+ 4α

′
) as the estimate for the effective

exchange constant. Then, using TKT = 0.725JS2 for easy-
plane models and adopting for J this estimate, we obtain
TKT = 26.2 K — which agrees quite well to the estimate
done by Regnault et al. [8] (TKT ≈ 23 K).

Finally, it is also important to note that SCHA rep-
resents an improvement over the usual MFA because it
does not neglect fluctuations due to long-wavelength spin
waves. These features indicate that the use of SCHA can
be very helpful to theoreticians and experimentalists in-
terested in getting some insight about a model.

This work was partially supported by CNPq (Conselho Na-
cional para o Desenvolvimento da Pesquisa).
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